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Abstract

Component mode synthesis (CMS) is a well-established technique for the vibration analysis of built-up structures. It was
originally developed as a method for reducing the size of a finite element model, hence reducing computational cost. CMS
also offers an appealing framework for the analysis of the dynamics of uncertain structures. The benefits concern the
numerical costs, the way uncertainty is included, quantified and propagated. This paper reviews and discusses these issues.
The fixed-interface (Craig—Bampton) method is described, while the number of interface degrees of freedom (dofs) can be
further reduced using characteristic constraint modes. Quantification and propagation of uncertainty is discussed.
Uncertainties in properties can be naturally and straightforwardly introduced at the component level, either in terms of the
component physical properties or the component modal properties, while the individual components are typically
statistically independent, being made by different manufacturing processes. CMS methods are also amenable to the
inclusion of experimentally measured variability data, quantifying it in terms of component modal properties. An example
is given. The application of perturbational techniques is considered. The CMS framework is particularly amenable to
propagation of uncertainty through one or more of the analysis paths at component or at global level using perturbations.
Finally, qualitatively different uncertainty descriptions can be combined, with some components being described
probabilistically, some possibilistically, the descriptions then being unified at the global level. Numerical examples are
presented. Overall, CMS methods offer a strong physical insight into the analysis of structures with non-deterministic
properties.
© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The vibrations of mechanical structures are often analysed using the finite element (FE) method [1], where a
deterministic model with one particular set of physical parameters is considered. However, the underlying
assumption that the input data is precisely known is in general not valid, because there are uncertainties about
the parameters, often until the last stage of the design cycle and even when the product is in service.
Furthermore, every manufacturing process naturally and inevitably introduces some product variability. In
this context, it is often more important to predict the variation in the response than attempt to improve further
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the accuracy of a deterministic model. The variation in input and response parameters can be described
possibilistically [2], giving an envelope to all possible parameter values, or probabilistically [3], which also
includes information on their probability of occurrence.

A promising methodology to address several of the challenges in the modelling of the dynamics of non-
deterministic properties in complex structures is substructuring. Component mode synthesis (CMS) [4-7]
methods are useful for the analysis of structures that are built-up of several components, as is generally the
case in industrial applications. The components are modelled individually and their dynamic models are
assembled to produce a much smaller model of the whole structure. In the analysis of structures with uncertain
properties, a deterministic problem often has to be solved repeatedly, which is numerically expensive. In this
context, deterministic model reduction by CMS is especially important because the benefits accrue multiple
times.

There are further benefits, however. First, the individual components are typically statistically independent,
being made up by different manufacturing processes, and so too are the joints. Reanalysis is required of only
those elements of the structure which are uncertain, together with the (relatively small) global eigensolution.
The second group of benefits concerns how uncertain data is quantified and included. Uncertainties in
properties can be naturally and straightforwardly introduced at the component level, either in terms of the
component physical properties or the component modal properties. The former typically requires
quantification of a random field for each physical property, while the latter involves component natural
frequencies—a discrete set of data of low order—and eigenfunctions. This enables possibilities for substantial
reduction in the quantity of uncertain data that must be included in the model. Furthermore, it is potentially
easier in practice to measure the variation in modal properties of a component, using a simple hammer test for
example, than to quantify the spatial distribution of physical properties. Thirdly, CMS is suitable for both
probabilistic and possibilistic uncertainty description and propagation, although the emphasis here is on
probabilistic [2] and perturbational approaches [8]. Previous work concerning possibilistic methods includes
that of De Gersem et al. [9], who considered the application of interval FE in CMS and suggested three
schemes to reduce computational cost, these involving different levels of approximation. Giannini and Hanns
[10] developed a component mode transformation method for the propagation of fuzzy parameters through a
CMS model. Finally, advantages arise from the fact that each substructure can be treated independently
regarding the quantification and propagation of non-deterministic data. For example, a hybrid description can
be adopted, with different parts of a built-up structure perhaps being described by possibilistic and
probabilistic concepts.

In this paper uncertainty modelling within the framework provided by CMS is discussed. Numerical
models are most casily constructed using the fixed-interface (Craig-Bampton) method [5], while the
number of interface degrees of freedom (dofs) can be further reduced by a decomposition into charact-
eristic constraint (CC) modes [11]. These methods are reviewed in the next section. In Section 3 uncertainty
quantification and propagation are discussed, with particular emphasis placed on perturbation
methods. Illustrative examples are presented in Section 4. This is followed by a discussion and concluding
remarks.

2. Fixed-interface CMS and CC modes

CMS was introduced in the 1960s by Hurty [4] and Craig and Bampton [5]. Reviews of CMS methods can
be found in Refs. [6,7]. In CMS, models of each substructure are developed and assembled, together with
models for the joints. The individual substructure models are transformed from physical to component modal
coordinates, using a set of chosen basis functions. There are many possible choices for these basis functions
[4-7], including normal modes, found from solving a component eigenvalue problem, and static constraint or
attachment modes. The models are assembled and the global eigenvalue problem of the whole structure is
solved. A reduction in size can be achieved by truncating both the component and the global modes. Further
reductions in the number of interface dofs can also be achieved. This work will focus on the fixed-interface
Craig-Bampton method [5] with CC modes [11].
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2.1. Component analysis: fixed-interface normal modes and constraint modes

The equation of motion of component «, neglecting damping, is
m“i” + k"u* = f* (1)

where u” is the physical dofs, f* the corresponding forces and m* and k* are the mass and stiffness matrices of
the component, respectively. Henceforth in this subsection the superscript o will be suppressed for clarity.
The physical dofs can be partitioned into a set of interior dofs u; and a set of interface, or boundary, dofs up.

Eq. (1) can be written as
m; mg || U kpy kg || uf f;
.|+ = (2
mp; mpg | |lp kp; Kkpp||up fp

where fg = 0 if the interface is free and ug = 0 if the interface is fixed.

2.1.1. Fixed-interface normal modes

The fixed-interface normal modes of a component are the (mass normalised) eigenvectors of the component
with the interface dofs fixed. The size of this eigenvalue problem equals the number of interior dofs. This
eigenvalue problem is given by

(kyr — 2'my)d, ;=0 3)

where 2{-" are the fixed-interface eigenvalues. The eigenvectors ¢, ; form the columns of the fixed-interface
modal matrix ®;. A subset of kK modes are kept, reducing the size of the component model. The normal mode

matrix is then
Dy
@ = [0 ] ©
Bk

where 0 is a null matrix of appropriate size.
2.1.2. Constraint modes

A constraint mode is the static displacement of the component due to a unit displacement of one interface
dof and with all other interface dofs fixed. This can be written in matrix form as

ki ki || ¥

kpr kpp || Ips
where W, is a matrix of displacements of the interior dofs and Ip is an identity matrix. Rpp are the forces at
the interface nodes. The constraint mode matrix is

w, | | | Kk ©6)
Iz Igp

0;3
Rpp

)

2.1.3. Component modal space
In the fixed-interface CMS method, the component modal space comprises the kept fixed-interface normal
modes ®; and static constraint modes ¥., which are combined to give the component modal matrix

B=[®, ¥] ()

The constraint modes assure compatibility of displacements of the components at the interfaces, improve
convergence and also yield the exact static solution. The transformation from physical coordinates u to
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component modal coordinates q is given by
u q O ki 'k | |4
u= [ ' =Ba=(o; ‘Pc][ "]=[ S ’BH "] ®)
upg q.

0 Ipp q
The interior physical coordinates u; are transformed into the fixed-interface modal coordinates q;. The
physical interface coordinates up are retained, but will be denoted as constraint coordinates q,.. The
component modal mass and stiffness matrices p = BTmB, k¥ = BTkB have the form

L my A 0 o)
= . K =
" m/, m. 0 k.
The matrices m.. and k.. are the constraint modal mass and stiffness matrices for component o, my. is a

coupling matrix and Ay is a diagonal matrix of kept fixed-interface modal eigenvalues. The equation of
motion for component « thus becomes

p§ K =12, £ =B (10)

2.2. Synthesis of components

Consider the synthesis of two components denoted by o and 5. Continuity of displacements at their
common interface, given by u} = ug, is transformed into the component modal space by Eq. (8) to become
q¢ = qlg . A transformation matrix C to impose the coupling conditions is such that

q; 00

I o o
q q

| oo ) c ) 0

q= qf - 01 0 q; | = 9 ( )
q(/‘} 0 0 I q(’ qC

At this stage the interface (constraint) coordinates q, are augmented by any internal dofs in the joints. The
component modal matrices are assembled based on Eq. (10) and the global mass and stiffness matrices become

I, 0 mj A 0 0
M=| 0 I m| k=|0 Al o (12)
e mfT M, S
where
M, =m* +mf, K.=k*+k’ (13)

are augmented if appropriate by contributions from any internal joint dofs. Due to the simplicity of the
transformation matrix C, component synthesis is straightforward and the system matrices have the same
structure as the component matrices. The global matrices are reduced in size based on the number of fixed-
interface modes kept in the component mode matrices B* and B”.

2.3. Interface dof reduction—CC modes

There may be many interface dofs, especially in applications involving line and surface coupling.
Consequently it might be desirable to reduce the number of interface dofs and various approaches have been
proposed [11-16]. In Refs. [12,13] a set of interface modes was defined as the normal modes of the whole
structure after performing a static condensation of the interface dofs. A truncation of this set of interface
modes amounts to replacing the constraint modes by only the first few interface modes. The technique was
further extended to free-interface and hybrid-interface CMS models in Ref. [16]. However, because the set of
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interface modes, by this definition, depends on the properties of the whole structure, the substructures are no
longer independent as in classical CMS methods. Finally, in Ref. [15] the component coupling conditions are
treated as generalised kinematic (for displacement) or natural (for force) boundary conditions by appending
all the component models in a single vector. A concept of generalised interface dofs is then introduced as a
basis for projection of the interface dofs.

A more appealing approach, perhaps, is the use of CC modes [11], and this is the approach adopted here.
Eigenanalysis is performed on the partitions of the CMS mass and stiffness matrices M and K in Eq. (12) that
correspond to the constraint modes. The resultant eigenvectors are referred to as CC modes, and their number
is then reduced. The calculation and selection of CC modes is essentially a further modal analysis, although for
a problem of limited size.

The CC modes [11] are the solutions to the eigenproblem

[ch - ;Echc]éj =0 (14)
The interface coordinates q, are then projected onto the CC modes through the transformation

q. = Epc’ E= [gl §2 s %n(‘] (15)

where a reduction is obtained because only n. CC modes are kept.

2.4. The global eigenproblem

The equation of motion of the global system is given by

M7 +K9p=F (16)
where
Ly 0 g, A, 0 0 q}
M= 0 L m. | K'=|o0 A 0| p=|a
TR VAR W 0 0 A, P,
L. =E"M.E, A.,=EK.E n} =mE (17)

Note that the CC mass and stiffness matrices are diagonal, with off-diagonal terms only appearing in the
global mass matrix. The global eigenvalues /llgl and eigenvectors (I)‘?l are found from the eigenvalue problem

(K = 2'M! =0 (18
The transformation into global modal coordinates y is given by

p =@y (19)

where @ is the matrix of global eigenvectors.

Note that in the reduction leading to Eq. (17) only certain component modes are kept. As a guideline, these
should be all modes with natural frequencies less than (say) twice the highest frequency of interest. However, if
there is large uncertainty in parameters this reduced basis might be inadequate. A more robust technique, such
as the dynamic condensation technique proposed by Guedri et al. [17] might then be used.

3. Uncertainty and CMS: quantification and propagation

There are four different coordinate systems in the CMS framework as shown in Fig. 1: component and
global, physical and modal. Uncertainty propagates through these and can be quantified in various ways.
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| Component physical <= Uncertainty e Physical parameters: mass, stiffness
e Spatial variation?
1 » Experimental quantification: expensive
| Component modal | <= Uncertainty  Eigenvalues
* Eigenvectors, constraint modes
l » Correlations?
e Experimental quantification: appropriate
| Global modal |
| Global physical | == Response variation

Fig. 1. Outline of uncertainty quantification in CMS.
3.1. Uncertainty quantification

Quantification of uncertainty is, in practice, a daunting task, and one that is often overlooked by the
analyst. Only a very limited amount of measured data might be available and the quantification process,
whether probabilistic or possibilistic, is likely to introduce substantial errors and approximations.

In principle, parametric uncertainties can be introduced at the physical level in terms of the mass and
stiffness properties of individual components and the joints that connect them. In practice, many of these
properties (thickness, elastic modulus, etc.) vary spatially and could be described by random fields [18].
However, quantification is difficult or even impossible, due to the effort and expense of acquiring data such as
the correlation function or length of a random field. In most cases, experimental quantification at the physical
level is difficult and expensive. Quantification in a numerical model is therefore an approximation.

CMS models offer an alternative, that of introducing uncertainties at the component modal level in terms of
the modal parameters: the fixed-interface component eigenfrequencies, mode shapes, constraint modes and
perhaps CC modes. The special structure of the global matrices (Eq. (12) or (17)), where the component
eigenvalues appear uncoupled on the diagonal of the stiffness matrix, is advantageous for this purpose.

Experimental quantification of the eigenvalues and their statistics is straightforward using simple hammer
tests, for example, on an ensemble of structures. In practice it might be simplest to perform this with a free
rather than fixed interface, although one can estimate the statistics of the latter from those of the former [19].
The quantification of uncertainty in the mode shapes and in the constraint terms is not so straightforward,
however, although there are reasons to suppose that the response statistics are less sensitive to these
(see below). A simple and practical approximate approach is therefore to consider variation in component
eigenfrequencies only. The inaccuracies and errors caused by this approach will be investigated later. In
contrast to physical properties, quantification in modal properties takes account of all sources of uncertainty,
including non-parametric effects. Finally it should be noted that it is possible to describe uncertainty in
different subsystems in qualitatively different manners, some possibilistically and some probabilistically.

3.1.1. Example: natural frequency statistics of alloy wheels

As an illustrative example, consider the natural frequencies of a freely suspended alloy wheel such as that
shown in Fig. 2(a). These frequencies affect the tyre/road noise. Each wheel is cast and then machined to final
form. Differences arise from a variety of sources, including inclusions created during the casting process,
different tempering times and temperature, slight differences in the properties of the alloy from one product
run to another and tolerancing differences between CNC workstations. The lowest four natural frequencies of
79 nominally identical wheel rims were measured using a hammer test [20]. Their distributions were more-or-
less Gaussian, with occasional outliers. The normalised variance and range were typically 0.5 and 3 percent,
respectively. There was some correlation between the first and second natural frequencies, but little between
any others (see Figs. 2(b) and (c)). To a good approximation, then, they can be assumed in any modelling
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Fig. 2. (a) Alloy wheel rim and correlation between (b) first and second and (c) first and fourth natural frequencies.

| Component physical | Parametric uncertainty
e Smaller models; statistically independent; limited re-analysis
1 * Different propagation method for each component
Component Eigenvalues, eigenvectors and constraint terms
modal

e Random variables: modal parameters; data reduction
 Different propagation method compared to component stage
' 1

A

Global modal Global eigenvalues and eigenvectors

1 * Modal summation methods
y

| Global physical | FRF

Fig. 3. Outline of uncertainty propagation in CMS.

process as being normally distributed and independent, although the measured correlation could of course be
included. Neglecting this would be an approximation. Of course, determining the mode shapes and their
statistics would be very difficult.

3.2. Uncertainty propagation

There are a number of different paths of uncertainty propagation as indicated in Fig. 3. Propagation
through each path might involve Monte Carlo simulation (MCS), perturbations, interval analysis or whatever.
In a classical analysis, the variation in physical properties might be propagated directly to the global physical
level, e.g. the frequency response function (FRF). In a modal approach, first the variations in global modal
properties are calculated, which are subsequently propagated to the global physical level. Within the CMS
framework, a further coordinate level is introduced. Therefore, a total of three different and independent
propagation steps can be considered: propagation from component physical to component modal and thence
to global modal and finally global response. This offers several advantages.

First, at the component level, only those components where uncertainty is significant have to be considered:
reanalysis is not required for any deterministic components. Secondly, the size of each component model is
much smaller than that of the original global problem and computational cost is therefore less. If components
are considered to be statistically independent, as is usually the case since they are typically made by different
manufacturing processes and then assembled, then the physical and modal properties of two components are
uncorrelated. The number of random variables is also smaller. These make MCS, interval analysis etc. more
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attractive. A further advantage is that different propagation approaches—exact, approximate, MCS,
perturbational, probabilistic or possibilistic—can be applied as appropriate to each component, with models
synthesised at the global modal level. Hybrid probabilistic and possibilistic descriptions can be unified by
putting bounds on the distributions of modal parameters. An example is considered below. It is well known
that correlation between variables can lead to very conservative results in a possibilistic analysis—such
interdependency, where it exists, should be taken into account (e.g. [21]). Finally, there are different strategies
for non-deterministic modal superposition that can be applied to estimate the FRF and its statistics.

3.3. Perturbations, modal sensitivities and CMS

Perturbation methods can be used to replace numerically expensive operations, such as solving an
eigenvalue problem. The propagation problem is then reduced to an algebraic equation, which makes MCS
and interval methods relatively computationally cheap. The CMS framework is particularly amenable to the
application of perturbation methods to the propagation of uncertainty through one or more of the paths from
component physical to component modal properties or component modal to global modal properties. These
would be aimed in particular at those paths where there is only weak nonlinearity between input and output.
The computational cost is then very small, primarily involving the cost associated with the estimation of
gradients. In this section, various applications of perturbation approaches within the CMS framework are
presented.

The rate of change of an eigenvalue 4; with respect to some parameter p; is [22]

a;Li T aK aM
Oi_gr(K M), 0
op; op; op;

where M(p) and K(p) are the mass and stiffness matrices, respectively, functions of the parameter vector p, and
¢, is the ith eigenvector. The first-order sensitivity of the ith eigenvector with respect to parameter p; is [22]

o, 1 [ oM 2 ¢y (0K /0p — 0?OM/p)dy,;
o ) <¢1 54’1) o + /CZIZI;# o = (’Ulzc o) 21

Expressions also exist for second-order perturbations [22].

In classical approaches, the perturbation of Eq. (20) can be used for propagation from component physical
to global modal properties. In the CMS framework it describes either propagation from component physical
to component modal properties, or from component modal to global modal properties, as described in the
next two subsections.

3.3.1. Perturbation from physical to component modal properties

The baseline component modal properties are given by the deterministic solution and only the derivatives of
the component stiffness and mass matrices with respect to the uncertain physical parameters p have to be
obtained. If a sensitivity matrix R is defined such that r; = 04;/ Op;» the covariance matrix of the eigenvalues
can be approximated from the covariance matrix of the physical parameters as

COV(2) =RCOV(p)RT (22)

In practice, spatially varying physical properties can be modelled by random fields [18]. In FE methods, these
are discretised using the existing mesh. In this case, p is a vector of correlated FE properties and COV (p) is the
covariance matrix as used in the representation of random fields. The gradients r; depend on the FE model
and their calculation might not be trivial. Note again that quantification of the correlation function and
parameters of a random field might, in practice, be impossible.

3.3.2. Perturbation from component modal to global modal properties

The special structure of the global matrices in the fixed-interface CMS method (Eq. (12) or (17)), especially
the fact that the component eigenvalues appear uncoupled on the diagonal of the stiffness matrix, has many
advantages. One of them concerns the formulation of a local modal/perturbational propagation method [8]
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in CMS. The sensitivity of the global modal properties can be calculated using Eq. (20), where the uncertain
parameters p; are now the component eigenvalues A; It follows that

0.4 ;
a—/{; = ¢! (23)
where 25’/ and /; are the ith global and jth component eigenvalue, respectively, and (¢§JZ)/ is the jth element of
the ith baseline global eigenvector. Thus changes in the component eigenvalues can be related to changes in the
global eigenvalues. A sensitivity matrix S can be defined such that s; = ((d)?l)j)z. If the covariance matrix
COV(J) of the component eigenvalues is known, the covariance matrix of the global eigenvalues can be
estimated by

CovV(?y =SCcov(i)ST (24)

This sensitivity approach can be extended to the propagation of uncertainties in the component and constraint
mode shapes, but is less straightforward since these submatrices are not diagonal. The constraint mode shapes
in particular seem to affect the FRF variability primarily for the lowest few modes, where the “‘static” terms
are more important. A deviatoric component mode approach was suggested by De Gersem et al. [23] (see also
De Gersem [24]), although quantifying the uncertainty in a practical situation is likely to be very difficult at
best.

3.3.3. Perturbation between fixed and free-interface component modal properties

It is usually preferable to take experimental measurements of components in a free configuration which can
be realised easily. For numerical analysis, however, fixed-interface (Craig-Bampton) methods are preferable
for various reasons. Sensitivities relating the fixed and free-interface component modal properties can be used
for a transformation between the coordinate systems. Consider a component with mass and stiffness matrices
m and k in free configuration. The free-interface eigenvalues A{' can be found by solving the eigenvalue
problem

(k= Z'm)¢ =0 (25)

If there are fixed-interface conditions, the fixed-interface eigenvalues can be calculated from the eigenvalue
problem of Eq. (3). Introducing the transformation defined by Egs. (7) and (9), the eigenvalue problem

(k — 2w =0 (26)

yields the free-interface eigenvalues #. Therefore, the free-interface eigenvalues depend on the fixed-interface
eigenvalues and the constraint stiffness and mass terms in the matrices k and p. The derivative of the ith free-
interface eigenvalue with respect to the jth fixed-interface eigenvalue is given by elements of the free-interface
eigenvectors in the form

YA

_— ((d))? 2
i (@), 27)

A sensitivity matrix T, where t; = ((¢{r)j)2, can be used to estimate the covariance matrix of the free-interface
eigenvalues from the covariance matrix of the fixed-interface eigenvalues by

Cov("y=TCoV(OH)TT (28)

In practice, it might be preferable, and much simpler, to quantify free-interface statistics of eigenvalues
experimentally, while fixed-interface statistics are often preferred in a numerical analysis. These are related by

covis=1covinHTT (29)

Since the sensitivities relating the fixed and free-interface component modal properties depend also on
constraint (or attachment) modes, for which experimental data might not be available, they are thus
approximations.



170 L. Hinke et al. | Journal of Sound and Vibration 324 (2009) 161-178
4. Numerical examples
4.1. Uncertainties in components.: two coupled beams

The first, illustrative example is the two-beam structure shown in Fig. 4. The components are rigidly
connected to each other and clamped at the ends. The structure is modelled using standard FE matrices for
Euler—Bernoulli beam theory [1], including transverse and rotational dofs. Each beam has bending stiffness E1,
length L and mass per unit length p4 and is modelled by 10 elements (18 dofs per beam plus 2 interface dofs).
The baseline values are given in Table 1. Damping is included by a modal loss factor of 3 percent. A fixed-
interface CMS model is constructed and component normal modes corresponding to a frequency higher than
150 Hz are neglected. The accelerance FRF between two points, each 0.4 m from the clamped ends, will be
considered. Uncertainty is introduced in the thickness # and Young’s modulus E by a one-dimensional
homogenous Gaussian random field model. The mean value is the baseline value, the coefficient of variance is
S percent and the correlation length is 0.5m for both variables. The continuous random field is discretised
using the FE mesh.

4.1.1. Approximation considering variation in component eigenvalues only

A Monte Carlo approach with 1000 runs was applied in order to estimate eigenfrequency and FRF
statistics. In addition to the exact solution, two approximate analyses are performed. First, variation is
considered only in the global CMS stiffness matrix K (Eq. (12)) using the baseline constraint mass matrix M.
Second, variation is considered only in component eigenvalues Ay, using the baseline constraint mass and
stiffness matrices. In Fig. 5, the errors in the estimated standard deviation of the global eigenfrequencies are
shown. There are large relative differences for the first two eigenfrequencies, although absolute errors are
small. Errors reduce for higher modes. In Fig. 6, the 5 and 95 percentiles of the magnitude of the FRFs
are shown for the exact solution and the approximation considering variation only in the component
eigenvalues. The agreement is good.

4.1.2. Combined probabilistic/possibilistic approach

In some circumstances it might be natural to describe the uncertainty in one component probabilistically,
while the variation in another component is given by an interval. A hybrid approach might then be used by
selecting the most appropriate propagation method—probabilistic or possibilistic—at the component level
and unifying the uncertain data for the propagation to the global level. Of course this raises philosophical
difficulties concerning the different treatments applied to different components, as well as practical issues
relating to overestimation in the interval analysis, dependency of random variables and so on. Here it
is suggested that probabilistic data is truncated at some appropriate level—in the examples at the 5 and

EIL PA; 4
El, pA, /
< > < >
Ly Ly
Fig. 4. Two coupled beams.
Table 1
Properties of two-beam example.
Component L (m) h (m) b (m) E (N/m%) o (kg/m>) / i3
12
1 1 0.01 0.1 le8 1000 A =bh

1 0.015 0.1 le8 1000
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Fig. 5. Errors in estimated standard deviation of the global eigenfrequencies.
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Fig. 6. FRF statistics, 5 and 95 percentiles of FRF magnitude: exact solution and _ _ _ variation considered in component
eigenvalues only.

95 percentiles—and thereafter treated as an interval quantity to give a global description in possibilistic terms.
(Of course such bounds are not then strict bounds.)

In the CMS analysis, the 5 and 95 percentiles of the component eigenvalues are estimated first using MCS
with 1000 runs. Second, an interval propagation approach to the global modal level is performed using the
percentiles as lower and upper bounds. Finally, an FRF envelope is estimated based on the intervals on the
global modal properties using the method described in [2]. The results of this hybrid sampling/interval
approach are shown in Fig. 7. For comparison, the result of a classical interval analysis, starting at the
physical level, is also shown. In the latter case, the 5 and 95 percentiles of the physical parameter distributions
are used as lower and upper bounds and a uniform variation over all elements is assumed. An ensemble of 200
FRFs from a sampling approach based on the random field model is also shown. It can be seen that the hybrid
method gives much closer bounds to the FRF than the classical interval approach. Therefore conservatism can
be reduced if a sampling approach is adopted at component level.

4.1.3. Perturbational approach

Various perturbational approaches were suggested for the propagation of uncertainties. Eq. (22) can be
used to estimate the covariance matrices of the component eigenvalues from the covariance matrices of
uncertain physical parameters, such as those of a random field. Subsequently, Eq. (24) can be used to estimate
the covariance matrix of the global eigenvalues. The corresponding first-order sensitivities for both relations
are obtained from the baseline solution.
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Fig. 8. Errors in standard deviation of the global eigenvalues due to perturbations.

In Fig. 8, the errors in the estimated standard deviations of the first 10 global eigenvalues are shown using
two perturbation methods. In one, perturbations are applied to both propagation steps, i.e. from component
physical to component modal and then to global modal properties. In the other case, perturbation is only
considered for the propagation from component modal to global modal properties. The maximum error is 2.5
percent for the first two modes and less than 1 percent for the others. This accuracy is very satisfactory,
especially in the context of other inaccuracies in analysis and quantification, and the level of uncertainty in
general.

4.2. Uncertainties in joints: two coupled plates

As a second example consider the system comprising two plates shown in Fig. 9. In this case the interface
dofs are reduced using CC modes. The plates are clamped on one edge and joined at the opposite edge. The
stiffness of the line-coupling is uncertain and might represent a glue joint with a spatially varying stiffness, for
example. Here the Young’s modulus is modelled by a random field with a continuous exponential correlation
function

fr(r;0,a) = o’ exp(—‘gD (30)

where r is the distance between two points, a the correlation length and ¢ the standard deviation. This is
discretised on the FE mesh to yield the covariance matrix (c.f. COV (p) in Eq. (22)). The plates are discretised
using a mesh of 10 x 5 and 8 x 5 thin isotropic elements and the joint is modelled by six equidistant elastic
elements. The baseline properties are given in Table 2.
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Fig. 9. Two line-coupled plates.

Table 2
Two coupled plates: baseline properties.

Plate 1 Plate 2 Coupling Units
) 2700 2700 1350 kg/m?
E 7% 107 7% 107 3.5 kN/m?
35
70
v 0.3 0.3 - -
L. 0.5v2 0.5 0.006 m
L, 0.5 0.5 0.5 m
h 3 3 3 mm
N, 10 8 1 -
N, 5 5 5 -

~=

The response and its statistics depend on the relative values of the dynamic stiffnesses of the plates and the
joint in the frequency range of interest (three different values are considered), the amount of uncertainty, the
correlation length, whether the mode is predominantly bending or twisting and so on.

Three different values for the coupling elastic modulus E. are considered. For the case where the elastic
modulus of the coupling is 35 kPa the input and transfer mobilities are shown in Figs. 10(a) and (b) (see Fig. 9
for reference points). Results for the full solution of the multi degree of freedom model (mdof), the fixed-
interface model (Eq. (11), CB) and the model with CC modes (Eq. (15), CBCC) are shown. The accuracies of
the reduced models are such that their predictions are virtually indistinguishable from those of the full model,
except around a few antiresonances. The relative calculation times are summarised in Table 3, illustrating the
reduction of computational cost arising from the use of CMS. The accuracy is very good especially in the
vicinity of resonances, less so in the vicinity of antiresonances, when the effects of neglected modes becomes
relatively more important. The cost and accuracy depend of course on the number of kept interior and
interface coordinates.

The sensitivities of the natural frequencies and mode shapes with respect to the elastic modulus of the
coupling element are shown in Fig. 10(c). The sensitivity of the natural frequency follows from Eq. (20). If the
sensitivity of the natural frequency to uncertainty is large the corresponding resonance frequency varies by a
relatively large amount. The sensitivity of a mode shape to the uncertainty is defined in a manner analogous to
the modal assurance criterion (MAC [25]) angle 0; as

T T N\2 n
MAC = cos* 0, = AT(¢{W¢;) , &)j =¢j+?Ap (1)
(b; W) (d; W) P
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Fig. 10. Mobilities of 2-plate system with uncertain joint, E. = 35kPa, a = 0.001.

Table 3

Two coupled plates: comparison of calculation times for baseline system at 1000 frequency points.

Model Matrix size Joint dofs Time (%)
mdof 324 36 100

CB 66 36 3.1
CBCC 45 15 1.6

where W is a matrix of weights and Ap the measure of the uncertainty (perhaps the standard deviation for a
probabilistic parameter or half the size of the interval for one described possibilistically). Commonly, and in
the example here, W is the mass matrix M of the structure, although the stiffness matrix K is occasionally used
(or perhaps, if ¢; contains a consistent set of dofs, the identity matrix). If mass normalised modes are used and
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the changes in the uncertain parameters are small then

ob.
cos 0; ~ 1 + ¢]Twai;pr (32)

Larger values of the MAC angle lead to larger changes in the modal amplitudes, even if the resonance
frequency is insensitive to joint uncertainty, since the response at resonance is typically dominated by the
mode shape of the resonant mode. In the example shown the elastic modulus of each coupling element is
normally distributed with a coefficient of variation equal to 6.6 percent and is truncated at levels of + 30, while
Ap = 30. For this case the response statistics are relatively insensitive to modes 1, 2, 4 and 9.

Figs. 10(d) and (e) show results of MCS of the models CB and CBCC for a random field with small
correlation length (@ = 0.001, almost uncorrelated). The envelopes of the response are obtained from 1000
samples. Results using CB and CBCC are nearly the same except around some antiresonances, while response
uncertainties are seen to be larger at frequencies around the more sensitive modes, as expected.

Fig. 11 shows FRF envelopes for the cases of weaker and stronger coupling, i.e. E. = 3.5 and 70 kPa,
together with the baseline solutions. Again, CB and CBCC approaches agree very well with full MCS on the
mdof system, but at much reduced computational cost. The sensitivities of the individual natural frequencies
and mode shapes depend on E, and hence the FRF envelopes differ. For example, for stronger coupling the
lower modes are barely affected by the joint uncertainty because the joint is relatively stiff compared to the
dynamic stiffnesses of the plates. The natural frequencies of the weaker coupled system are smaller than those
in Fig. 10, where E. = 35kPa, while those of the stronger coupled system are increased. Finally, results for a
random field with a large correlation length @ = 1000 are shown in Fig. 12.

log [Has s

—
o
—

log [H 0625

—_
o
-~

log [Has 25

—_
(=3
~—

log [H 0625

0 50 100 150 200 250 300
Hz

Fig. 11. Mobilities of 2-plate system with uncertain joint: (a) and (b) E. = 3.5kPa and (c) and (d) £, = 70kPa; a = 0.001.
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5. Concluding remarks

Component mode synthesis is a well established method for the deterministic analysis of built-up structures.
In particular, the implementation of fixed-interface CMS, perhaps with CC modes, is straightforward and
systematic. CMS also provides an appealing framework for the analysis of structures with uncertain
properties. Computational cost is reduced as a result of model reduction and this reduces the cost of multiple
reanalysis as might be required in MCS, interval analysis and so on. There are further benefits, however.

Various advantages concerning uncertainty propagation accrue from the fact that CMS introduces a further
level, the component modal level, in the description of the system and hence additional paths through which
uncertainty propagates. The propagation of uncertainties from physical to component modal coordinates and
from component modal to global modal coordinates can be treated independently. Deterministic components
do not require reanalysis, while the propagation approach from component physical to component modal
levels can be selected according to the nature and level of uncertainties existing in the component. This makes
the use of perturbational methods in particular more widespread. Perturbational techniques are also
applicable to the propagation from component modal to global modal levels—because the global mass and
stiffness matrices possess a special structure the sensitivities in this step are already known from the solution to
the baseline problem. These perturbations can be performed at very little cost.

There are also potential advantages regarding a reduction in uncertain variables at component modal level.
For example, for the numerical propagation of uncertainties several benefits arise if the variations in the
constraint terms, especially the off-diagonal terms, are neglected. However, this introduces approximation
errors, particularly for the lower modes, as illustrated in the example in Section 4. For higher frequencies, the
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approximation gives good results. Other errors arise if the variations in the component modal matrices are
neglected. Overall the approximation of considering uncertainty only in component eigenvalues seems
reasonable for a frequency range where the lower limit is determined by the influence of the constraint terms.
If this approximation is made, the analysis simplifies greatly. Finally, it is worth noting that the approximation
errors introduced may well be comparable to errors in the quantification of uncertainty in the component
physical properties.

The fact that CMS introduces a new level in the analysis, the component modal level, raises the possibility
of quantification of uncertainty in terms of these component modal properties. In particular, quantifying the
uncertainty in component eigenfrequencies experimentally is straightforward, for example from hammer tests.
In practice such tests might be performed with a free rather than a fixed interface, but it is possible to estimate
the statistics of one from the other. In contrast, it is much more difficult to quantify the variation in normal,
constraint and CC modes experimentally, although the difficulties are no worse than quantifying the spatial
variation of physical properties. It appears also that in many cases the response statistics are less sensitive to
these properties, at least for higher modes.

A further strength of CMS is the ability to combine component models with qualitatively different
uncertainty descriptions. In particular this might involve the combination of components described by both
probabilistic and possibilistic data. In such a hybrid approach the different descriptions of uncertain
properties can be considered at component level and then combined for the propagation to the global modal
level.

Finally, uncertainty in damping has not been considered here. Assuming the damping is proportional and
can be ascribed to the (undamped) modes, uncertainty mainly affects the magnitude of the FRF around
resonances and antiresonances. This uncertainty can be included in the propagation path from global modes
to FRFs, is independent of the eigenvalue and eigenvector analysis and involves little extra cost.
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